Eperimental modeling: learning models from data a user point of view

Mario Milanese

Dip. di Automatica e Informatica Politecnico di Torino

The Logic of Modeling

Alta Scuola Politecnica

Milano, April 21, 2006

Outline

- Models as tools for making inferences from system data prediction, simulation, control, filtering, fault detection
- Model structures
 physical law based, input-output description, linear, nonlinear
- Model estimation
 statistical/parametric, set membership, structured
- Model quality evaluation (vs. model validation)
- Application examples
 - ✓ Prediction of atmospheric pollution
 - ✓ Simulation of dam crest dynamics
 - ✓ Identification of vehicles with controlled suspensions

Regression form of system representation

■ System S^o produces *output signal y* when driven by *input signal u*:

• Output y is related to input u by the regression function f^o :

$$y^{t+1} = f^{o}(w^{t})$$

$$w^{t} = [y^{t} \cdots y^{t-n_{y}} u_{1}^{t} \cdots u_{1}^{t-n_{u1}} u_{2}^{t} \cdots u_{2}^{t-n_{u2}} \cdots]$$

Regression form of system representation

■ Linear system \longrightarrow f^o is linear in w^t :

$$y^{t+1} = a_o y^t + a_1 y^{t-1} \cdots + a_{n_y} y^{t-n_y} + b_o u^t + b_1 u^{t-1} \cdots + b_{n_u} u^{t-n_u}$$
ARMA system

- If $n_y=0$: MA (FIR) system
- If $n_u = 0$: AR system
 - If fo nonlinear: NARMA, NFIR, NAR systems

Making inferences from data

■ It is desired to make an inference on system S^o :

prediction, identification, simulation, control, filtering, fault detection

■ The system S^o is unknown, but a finite number of noise corrupted measurements of y^t, w^t are available:

$$\tilde{y}^{t+1} = f^{o}(\tilde{w}^{t}) + d^{t}, \quad t = 1, \dots, T$$

 d^{t} accounts for errors in data $\tilde{y}^{t}, \tilde{w}^{t}$

- The inference is described by the operator $I(f^o, w^T)$
 - > one-step prediction \longrightarrow $I(f^o, w^T) = f^o(w^T)$
 - \rightarrow identification \longrightarrow $I(f^o, w^T) = f^o$

Making inferences from data

Problems:

- ► for given estimates $\hat{f} \cong f^o$, $\hat{w}^T \cong w^T$ evaluate the inference error $\left\| I(f^o, w^T) - I(\hat{f}, \hat{w}^T) \right\|$
- > find estimates $\hat{f} \cong f^o, \hat{w}^T \cong w^T$ "minimizing" the inference error
- The inference error cannot be exactly evaluated since f^o and w^T are not known

Need of prior assumptions on f^o and d^t for deriving finite bounds on inference error

Model structures

The model is described by:

$$\tilde{y}^{t+1} = f(\tilde{w}^t) + d^t$$

$$\tilde{w}^t = [\tilde{y}^t \cdots \tilde{y}^{t-n_y} \tilde{u}_1^t \cdots \tilde{u}_1^{t-n_{u_1}} \tilde{u}_2^t \cdots \tilde{u}_2^{t-n_{u_2}} \cdots]$$

- Model structure is defined by:
 - \triangleright type of function f
 - \triangleright type of noise d
 - \triangleright which inputs u_1, u_2, \dots
 - \triangleright lag values n_y , n_{u1} , n_{u2} ,...

Statistical/parametric approach Model structures

Typical assumptions in literature:

on system: $f^o \in F(\theta) = \left\{ f(w, \theta) = \sum_{i=1}^r \alpha_i \sigma_i(w, \beta_i) \right\}$ known lag values $n_v, n_{ul}, n_{u2}, \dots$

- > on noise: iid stochastic noise
- Functional form of $F(\theta)$ required:
 - derived from physical laws
 - $\triangleright \sigma_i$: "basis" function (polynomial, sigmoid,...)
- Parameters θ are estimated by optimizing Least Squares (LS) or Max Likelihood (MS) functionals

Statistical/parametric approach Model structures

- If possible, physical laws are used to obtain the parametric representation of $f(w,\theta)$
- When the physical laws are not well known or too complex, input-output parameterizations are used

"Fixed" basis

parametrization

Polinomial, trigonometric, etc.

"Tunable" basis parametrization Neural networks, wawelets, etc.

often called black-box models

Statistical/parametric approach Model structures: "fixed" basis

$$f(w,\theta) = \sum_{i=1}^{r} \alpha_i \sigma_i(w) \qquad \theta = \left[\alpha_1 \cdots \alpha_r\right]'$$

$$\sigma_i(w)$$
: "Basis"

Problem: Can σ_i 's be found such that

$$f(w,\theta) \xrightarrow[r\to\infty]{} f^{o}(w)$$
 ?

Statistical/parametric approach Model structures: "fixed" basis

■ For continuous f^o , bounded $W \subset \Re^n$ and σ_i polynomial of degree i (Weierstrass):

$$\lim_{r \to \infty} \sup_{w \in W} \left| f^{o}(w) - f(w, \theta) \right| = 0$$

Polynomial NARX models

Statistical/parametric approach Model structures: "tunable" basis

$$f(w,\theta) = \sum_{i=1}^{r} \alpha_{i} \sigma(w,\beta_{i})$$

$$\theta = \left[\alpha_{1} \cdots \alpha_{r} \beta_{11} \cdots \beta_{rq}\right]', \quad \beta_{i} \in \mathbb{R}^{q}$$

One of the most common "tunable" parameterization is the one-hidden layer sigmoidal neural network

$$\sigma(w, \beta_i) = \sigma(w^T a_i + b_i) \longrightarrow \frac{\int_{0.6}^{0.6} \sigma(\bullet)}{\int_{0.2}^{0.2} \sigma(\bullet)}$$
sigmoid

Statistical/parametric approach Model estimation

$$f^{o} = f(w, \theta^{o}) = \sum_{i=1}^{r} \alpha_{i}^{o} \sigma(w, \beta_{i}^{o})$$

$$\theta^{o} = \left[\alpha_{1}^{o} \alpha_{2}^{o} \cdots \alpha_{r}^{o} \beta_{1}^{o} \beta_{2}^{o} \cdots \beta_{r}^{o}\right] \rightarrow \text{to be estimated}$$

■ Given T noise-corrupted measurements of y^t, w^t :

$$\tilde{y}^2 = f(\tilde{w}^1, \theta^o) + d^1$$

$$\tilde{y}^3 = f(\tilde{w}^2, \theta^o) + d^2$$

$$\vdots$$

$$\tilde{y}^{T+1} = f(\tilde{w}^T, \theta^o) + d^T$$
Measured output
$$\begin{cases} \tilde{y} = F(\theta^o) + D \\ \text{Unknown residual function} \end{cases}$$

Statistical/parametric approach Model estimation

$$\tilde{Y} = F\left(\theta^o\right) + D \qquad \qquad \text{Gaussian pdf}$$

$$\text{Maximum Likelihood - Least Squares estimate}$$

$$\hat{\theta} = \arg\min_{\theta} R\left(\theta\right)$$

$$R(\theta) = \frac{1}{T}D'D = \frac{1}{T}\big[Y - F(\theta)\big]'\big[Y - F(\theta)\big]$$

Problem: $R(\theta)$ is in general non-convex

Statistical/parametric approach Model estimation

"Fixed" basis:
$$f(w,\theta) = \sum_{i=1}^{r} \alpha_i \sigma_i(w)$$
 $\theta = [\alpha_1 \cdots \alpha_r]'$

Estimation of θ is a linear problem: $\tilde{Y} = I \theta^o + D$

$$\tilde{Y} = L\theta^o + D$$

$$L = \begin{bmatrix} \sigma_1(\tilde{w}_1) & \cdots & \sigma_r(\tilde{w}_1) \\ \vdots & \ddots & \vdots \\ \sigma_1(\tilde{w}_T) & \cdots & \sigma_r(\tilde{w}_T) \end{bmatrix} \qquad Y = \begin{bmatrix} \tilde{y}^2 \ \tilde{y}^3 \cdots \tilde{y}^{T+1} \end{bmatrix}'$$

■ If *D* is iid gaussian:

$$\hat{ heta}^{ML} = \left(L'L\right)^{-1} L'Y$$

Statistical/parametric approach Estimation accuracy

■ For fixed basis and *D* iid gaussian:

$$\left| \mathcal{G}_{i}^{o} - \hat{\theta}_{i}^{ML} \right| \leq 2 \left[\left(L'L \right)^{-1} \right]_{ii} \sigma_{i} \quad w.p. \quad 0.95$$

$$standard \ deviation \ of \ noise \ component \ d^{i}$$

■ For tunable basis this results holds asymptotically $(T\rightarrow \infty)$ with:

$$L = \left(\frac{\partial F}{\partial \mathcal{G}}\right)_{\mathcal{G} = \mathcal{G}^o}$$

Statistical/parametric approach Model structures: properties

- Model structure choice:
 - "basis" type σ_i
 - Number r of "basis"
 - Number **n** of regressors
- Problem: "curse of dimensionality"

The number r of basis needed to obtain "accurate" approximation of $f^{\,\varrho}$ grows with the dimension n of regressor space

in the case of "fixed" basis: exponential growth

Statistical/parametric approach Model structures: properties

Using tunable basis:

- Under suitable regularity conditions on the function to approximate, the number of parameters r required to obtain "accurate" models grows linearly with n
- **E**stimation of θ requires to solve a non-convex minimization problem

Trapping in local minima

Statistical/parametric approach Modeling errors

 Basic to the statistical/parametric approach is the assumption of no modeling error

$$\exists \, \mathcal{9}^o : f^o = f(w, \mathcal{9}^o)$$

$$d^{t} = \tilde{y}^{t} - f(w, \mathcal{G}^{o})$$

is a stochastic variable

independent of input u

Statistical/parametric approach Modeling errors

■ Searches for the functional form of unknown f^o are time consuming and lead to approximate model structures

Statistical estimation in presence of modeling errors is a hard problem

Set Membership approach:

- \triangleright no assumption on the functional form of f^{o}
- > no statistical assumption on d^t

SM assumptions:

- on system: $f^o \in F(\gamma) = \{ f \in C^1 : ||f'(w)||_2 \le \gamma, \forall w \in W \}$ bounded set $\in \mathbb{R}^n$
- ▶ on noise: $\left|d^{t}\right| \leq \varepsilon^{t} + \gamma \delta^{t}, t = 1, ..., T$
- Significant improvements obtained by:
 - > use of "local" bound $||f'(w)||_2 \le \gamma(w)$
 - \triangleright scaling of regressors w to adapt to data

• All information (prior and data) are summarized in the Feasible Systems Set:

$$FSS^{T} = \left\{ f \in F(\gamma) : |\tilde{y}^{t} - f(\tilde{w}^{t})| \leq \varepsilon^{t} + \gamma \delta^{t}, \quad t = 1, \dots, T \right\}$$

- FSS^T is the set of all systems $\in F(\gamma)$ that could have generated the data
- Inference algorithm **Φ** maps all information into estimated inference:

$$\hat{I} = \Phi(FSS^T) = I(f^o, w^T)$$

Set Membership approach Prior assumptions validation

- Prior assumptions are invalidated by data if FSS^T is empty
- Prior assumptions are considered validated if $FSS^T \neq \emptyset$
- The fact that the priors are validated by using the present data does not exclude that they may be invalidated by future data

(Popper, "Conjectures and Refutations: the Growth of Scientific Knowledge", 1969)

Set Membership approach Prior assumptions validation

■ Define:
$$\overline{f}(w) = \min_{t=1,...,T-1} (\overline{h}^t + \gamma \parallel w - \widetilde{w}^t \parallel_2)$$

$$\underline{f}(w) = \max_{t=1,...,T-1} (\underline{h}^t + \gamma \parallel w - \widetilde{w}^t \parallel_2)$$

$$\overline{h}^t = \widetilde{y}^{t+1} + \varepsilon^t + \gamma \delta^t, \ \underline{h}^t = \widetilde{y}^{t+1} - \varepsilon^t - \gamma \delta^t$$

Theorem:

Conditions for assumptions to be validated are:

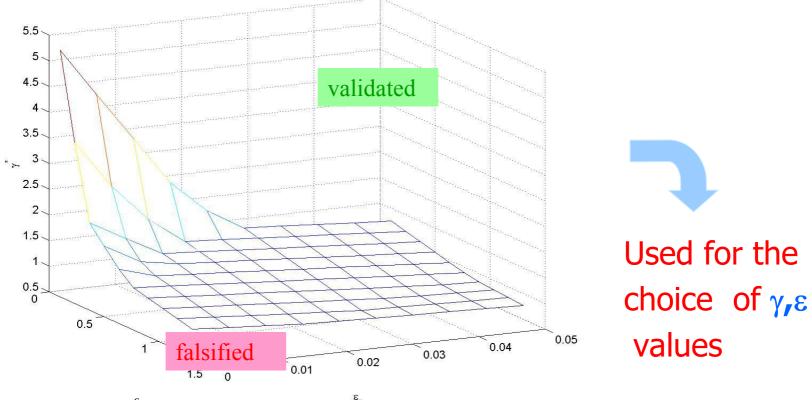
> necessary:
$$\overline{f}(\tilde{w}^t) \ge \underline{h}^t, t = 1,...,T$$

> sufficient:
$$f(\tilde{w}^t) > \underline{h}^t, t = 1,...,T$$

Set Membership approach Prior assumptions validation

■ In space ($\gamma_{r}\epsilon$) the surface $\gamma^{*}(\varepsilon) = \inf_{FSS^{T} \neq \emptyset} \gamma$

separates falsified values from validated ones



Set Membership approach Error and optimality concepts

■ (Local) Inference error:

$$E(\hat{I}) = E[\Phi(FSS^T)] = \sup_{f \in FSS^T} \sup_{|w^T - \tilde{w}^T| \le \varepsilon^T + \gamma \delta^T} \|\Phi(FSS^T) - I(f, w^T)\|$$

• An algorithm Φ^* is optimal if:

$$E[\Phi^*(FSS^T)] = \inf_{\Phi} E[\Phi(FSS^T)] = r \quad \forall FSS^T$$

- > r: (local) radius of information
- An algorithm Φ^{α} is α -optimal if:

$$E[\Phi^{\alpha}(FSS^{T})] \le \alpha \inf_{\Phi} E[\Phi(FSS^{T})] \quad \forall FSS^{T}$$

Inference \longrightarrow **Identification**: $I(f, w^T) = f$

Let
$$||\mathbf{I}(f, w^T)|| = ||f||_p = [\int_W |f(w)|^p dw]^{1/p}$$

■ Define
$$f^c(w) = \frac{1}{2} [\underline{f}(w) + \overline{f}(w)]$$

Theorem:

- i) The identification algorithm $\Phi^c(FSS^T) = f^c$ is optimal for any L_p norm, $1 \le p \le \infty$
- ii) The radius of information r is:

$$E[f^c] = r = \frac{1}{2} \| \overline{f} - \underline{f} \|_p$$

Inference
$$\longrightarrow$$
 Prediction: $I(f, w^T) = f(w^T)$

Let:

* ||
$$I(f, w^T)$$
||=| $f(w^T)$ |

$$*B_{\delta}(\tilde{w}^t) = \left\{ w \in W : \left\| w - \tilde{w}^t \right\|_2 \le \delta^t \right\}$$

Inference
$$\longrightarrow$$
 Prediction: $I(f, w^T) = f(w^T)$

Theorem:

i) The prediction algorithm $\Phi^c(FSS^T) = f^c(\tilde{w}^T)$

is 2-optimal, with prediction error bounded by:

$$E\left[\Phi^{c}\left(FSS^{T}\right)\right] \leq \frac{1}{2}\left[\overline{f}(\tilde{w}^{T}) - \underline{f}(\tilde{w}^{T})\right] + \gamma\delta^{T}$$

ii) If $B_{\delta}(\tilde{w}^T) \subset \underline{C}^T \cap \overline{C}^T$, then prediction $\hat{y}^{T+1} = f^c(\tilde{w}^T)$

is optimal and the radius of information is:

$$E\left[\Phi^{c}\right] = r = \frac{1}{2}\left[\overline{f}(\tilde{w}^{T}) - \underline{f}(\tilde{w}^{T})\right] + \gamma\delta^{T}$$

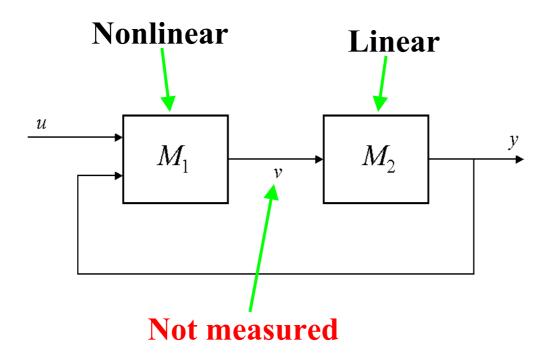
Structured identification

 In the case of large dimension of regressor space it is often very hard to obtain satisfactory modeling accuracy.

Structured (block-oriented) identification

 The high-dimensional problem is reduced to the identification of lower dimensional subsystems and to the estimation of their interactions

Structured identification



Typical cases: Wiener, Hammerstein and Lur'e systems

Structured identification

Iterative identification algorithm:

- Initialisation: get an initial guess $M_2^{(0)}$ of M_2
- Step k:
- 1) Compute $v^{(k)}$ such that $M_2^{(k-1)}[v^{(k)}]=y$
- Identify $M_1^{(k)}$ using u and y as inputs, $v^{(k)}$ as output
- Identify $M_2^{(k)}$ using $v^{(k)} = M_2^{(k)}[u, y]$ as input, y as output and return to step 1)

Key feature:

The identification error is non-increasing for increasing iteration.

- The usual approach is to look for model validity
- Model invalidity only can be surely asserted, when the model does not explain the measured data

- Infinitely many not-invalidated models can be derived
- Even more, infinitely many models exactly explaining the data can be derived

"overfitting" danger

Finding models exactly explaining the data

choose #r of basis functions = #T of measured data

$$L = \begin{bmatrix} \sigma_{1}(\tilde{w}_{1}) & \cdots & \sigma_{T}(\tilde{w}_{1}) \\ \vdots & \ddots & \vdots \\ \sigma_{1}(\tilde{w}_{T}) & \cdots & \sigma_{T}(\tilde{w}_{T}) \end{bmatrix} \longrightarrow invertible$$

$$\hat{\mathcal{G}} = (\underline{L}\underline{L})^{-1}\underline{L}\tilde{Y} \qquad \qquad Y_M = L\hat{\mathcal{G}} = L(\underline{L}\underline{L})^{-1}\underline{L}\tilde{Y} = \tilde{Y}$$

Example:

$$\tilde{u}^1 = -2$$
 $\tilde{u}^2 = 0.5$ $\tilde{u}^3 = 0.8$ $\tilde{u}^4 = -0.5$ \leftarrow input $\tilde{y}^1 = 0$ $\tilde{y}^2 = 1$ $\tilde{y}^3 = -8$ $\tilde{y}^4 = 0.125$ \leftarrow output

$$M_{1}(\mathcal{G}) \Rightarrow y_{M1}^{t+1} = \mathcal{G}_{1}u^{t} + \mathcal{G}_{2}u^{t-1} \qquad \text{candidate}$$

$$M_{2}(\mathcal{G}) \Rightarrow y_{M2}^{t+1} = \mathcal{G}_{1}u^{t} + \mathcal{G}_{2}(u^{t-1})^{2} \leftarrow \text{model}$$

$$structures$$

$$M_{3}(\mathcal{G}) \Rightarrow y_{M3}^{t+1} = \mathcal{G}_{1}u^{t} + \mathcal{G}_{2}(u^{t-1})^{3}$$

Estimation of M_1 , M_2 , M_3

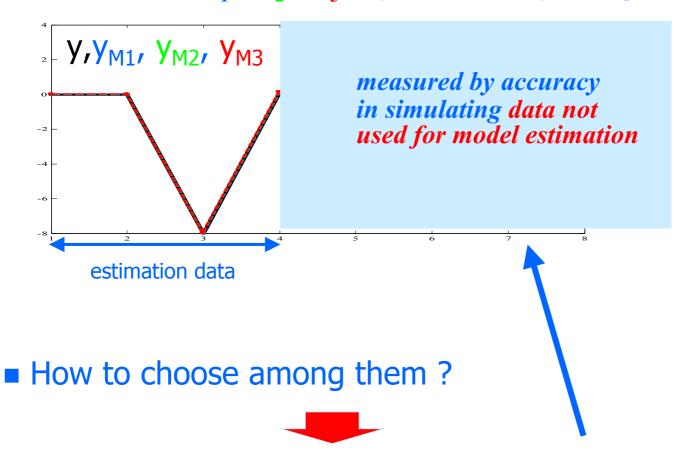
$$M_{1}(\mathcal{G}) \Rightarrow \begin{array}{c} Y = L & \theta \\ t = 2 \rightarrow \begin{bmatrix} -8 \\ 0.125 \end{bmatrix} = \begin{bmatrix} 0.5 & -2 \\ 0.8 & 0.5 \end{bmatrix} \begin{bmatrix} \mathcal{G}_{1} \\ \mathcal{G}_{2} \end{bmatrix} \Rightarrow \begin{bmatrix} \hat{\mathcal{G}}_{1} \\ \hat{\mathcal{G}}_{2} \end{bmatrix} = L^{-1}Y = \begin{bmatrix} -2.03 \\ 3.49 \end{bmatrix}$$

$$M_{2}(\mathcal{G}) \Rightarrow \begin{array}{c} t = 2 \rightarrow \begin{bmatrix} -8 \\ 0.125 \end{bmatrix} = \begin{bmatrix} 0.5 & -4 \\ 0.8 & 0.25 \end{bmatrix} \begin{bmatrix} \mathcal{G}_{1} \\ \mathcal{G}_{2} \end{bmatrix} \Rightarrow \begin{vmatrix} \hat{\mathcal{G}}_{1} \\ \hat{\mathcal{G}}_{2} \end{vmatrix} = L^{-1}Y = \begin{bmatrix} 0.81 \\ -2.10 \end{bmatrix}$$

$$M_{3}(\mathcal{S}) \Rightarrow \begin{array}{c} t = 2 \rightarrow \begin{bmatrix} -8 \\ 0.125 \end{bmatrix} = \begin{bmatrix} 0.5 & -8 \\ 0.8 & 0.125 \end{bmatrix} \begin{bmatrix} \mathcal{G}_{1} \\ \mathcal{G}_{2} \end{bmatrix} \Rightarrow \begin{bmatrix} \mathcal{G}_{1} \\ \hat{\mathcal{G}}_{2} \end{bmatrix} = \mathcal{L}^{-1}Y = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Model quality evaluation

■ All models M_1 , M_2 , M_3 explain exactly the given data y



choose the one with the best "predictive ability"

Model quality evaluation

Several indexes have been proposed for estimating the predictive ability of models:

>
$$FPE = R(\hat{\mathcal{Y}}) \frac{T + n}{T - n}$$

> $AIC = \ln R(\hat{\mathcal{Y}}) + \frac{2n}{T}$
> $BIC = \ln R(\hat{\mathcal{Y}}) + \frac{n \ln T}{T}$

T:number of data

n:number of parameters 9

$$R(\theta) = \frac{1}{T} [Y - L\theta]' [Y - L\theta]$$

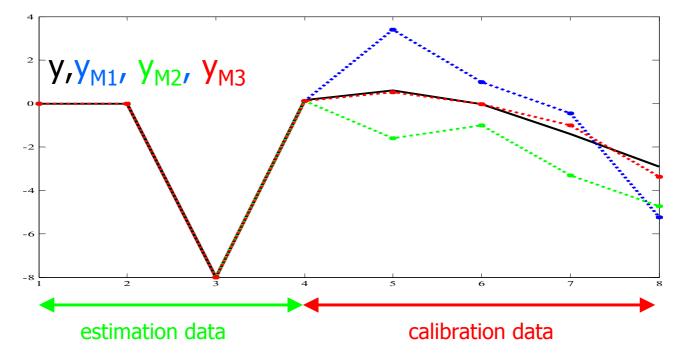
- They provide quite crude approximations, especially for nonlinear systems
- A simple but effective approach: splitting of data
 - estimation data: estimate candidate models M_i , i=1,...,m
 - calibration data: choose the best one among M_i

Model quality evaluation

 \blacksquare Best model among candidate ones M_i

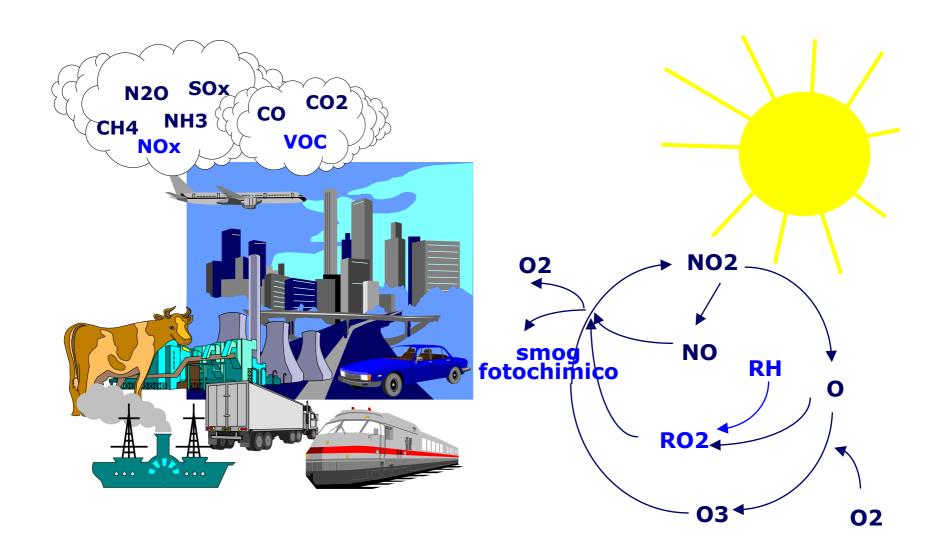
minimum simulation error on the "calibration" data

Example: M_3 is the best one among M_1 , M_2 , M_3



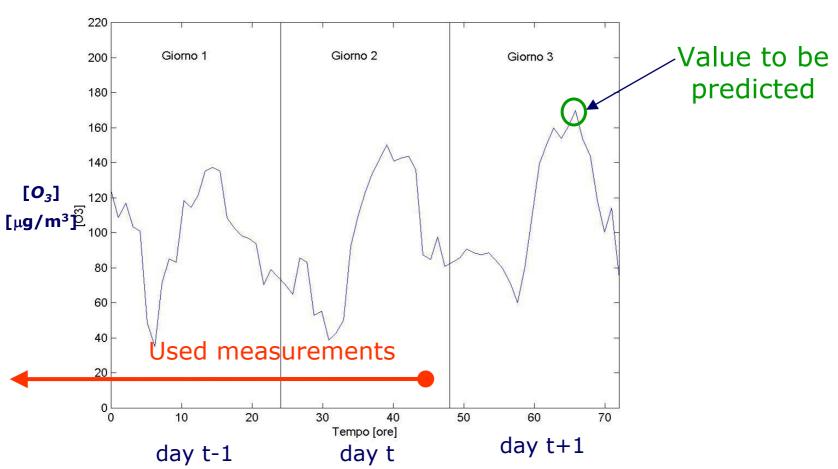
Applications

- Prediction of atmospheric pollution
- Simulation of dam crest dynamics
- Identification of vehicles with controlled suspensions



- Combustion processes and high solar radiation cause high tropospheric ozone concentrations
- Prediction of ozone concentrations is important for authorities in charge of pollution control and prevention
- Studies in the literature show that physical models are not able to reliably forecast the links between precursor emissions (No_x, VOC), methereological conditions and ozone concentrations
 - ➤ Sillman "The relation between ozone, No_x and hydrocarbons", Atmos. Environ., 1999
 - ➤ Jenkin-Clemitshaw "Ozone and other photochemical polluttants: chemical processes governing their formation", Atmos. Environ., 1999

typical data at Broletto (Bs)



Structure of used models:

$$y^{t+1} = f^{o}(w^{t})$$

$$w^{t} = [y^{t} u_{1}^{t} u_{2}^{t} u_{3}^{t} u_{4}^{t}]$$

- y^t: max O₃ concentration at day t
 u₁^t: mean NO₂ concentration at 4-8 pm of day t
- \mathcal{U}_{2}^{t} : mean O_{3} concentration at 4-8 pm of day t
- u_3 ': max temperature at day t
- $\frac{u_4}{t}$: forecast of max temperature at day t+1

Prediction methods tested:

- \triangleright PERS: $y^{t+1} = y^t$
- > **ARCX:** periodic ARX
- > NN: sigmoidal neural net
- > NF: neuro-fuzzy
- > **NSM:** nonlinear set membership
- Hourly data measured at Brescia center:
 - > **1995-1998**: estimation data set
 - > **1999:** calibration data set
 - > 2000-2001: testing data set

Indexes measuring the ability to predict concentrations exceeding a given threshold:

	obse	total		
predicted	yes	no	totai	
yes	а	f – a	f	
no	m - a	N + a - m - f	N – f	
total	m	N - m	N	

- ✓ fraction of Correct Predictions: CP=(a/m)%
- √ fraction of False Alarms: FA=(1-a/f)%
- \checkmark Success index: SI=[(a/m)+((N+a-m-f)/(N-m))-1]%

Calibration data set: m=63 exceeded thresholds

	PERS	ARCX	NN	NF	NSM
СР	65.1	61.9	69.8	63.5	<mark>71</mark>
FA	33.9	<mark>25</mark>	27.9	25.9	27.4
SI	47.6	51.1	<mark>55.7</mark>	51.8	51.2

Testing data set: m=39 exceeded thresholds

	PERS	ARCX	NN	NF	NSM
СР	41.5	35.9	53.8	66.7	71.8
FA	57.5	51.7	<mark>40</mark>	44.7	44
SI	34.4	31.3	49.6	60.2	<mark>63.5</mark>

- Model to simulate the crest displacement of the dam as function of:
 - > water level
 - > concrete temperature
 - > air temperature
- Daily data available in period 1992-2000
- Difficulties in deriving reliable physical models
- Models tested: ARX, NN, NSM

Structure of used models:

$$y^{t+1} = f^{o}(w^{t})$$

$$w^{t} = \begin{bmatrix} y^{t} & y^{t-1} & u_{1}^{t+1} & u_{1}^{t} & u_{1}^{t-1} & u_{2}^{t+1} & u_{2}^{t} & u_{3}^{t+1} & u_{3}^{t} \end{bmatrix}$$

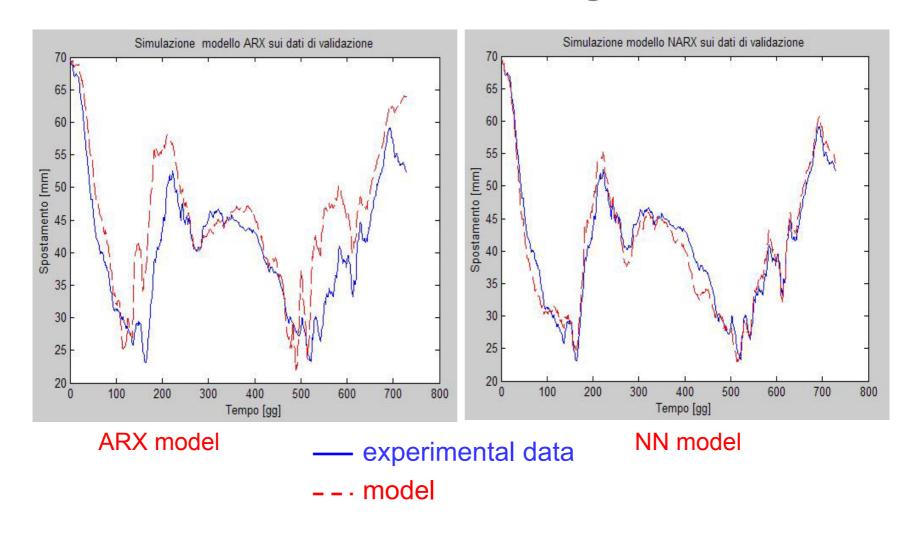
$$-y^{t} : \text{ crest displacement at day t}$$

$$-u_{1}^{t} : \text{ water level at day t}$$

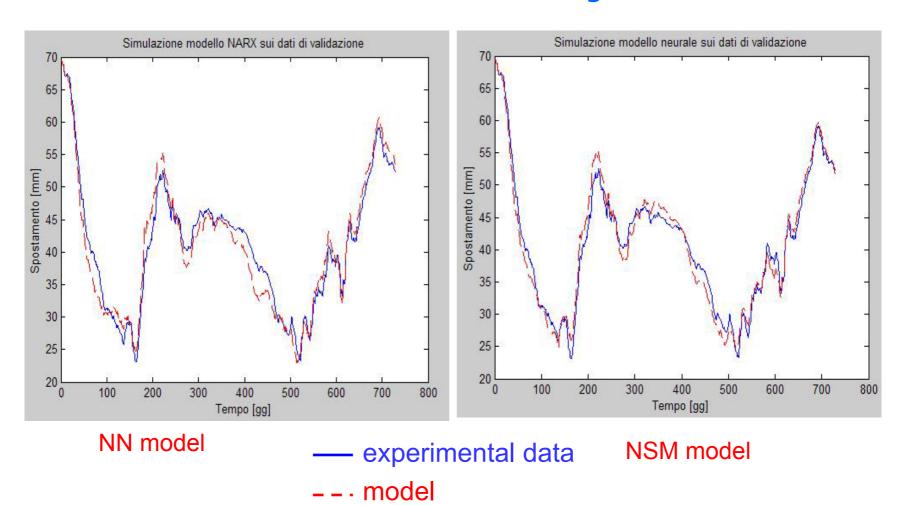
$$-u_{2}^{t} : \text{ concrete temperature at day t}$$

- $-u_3^t$: mean air temperature at day t
- Daily data:
 - > **1992-1996**: estimation data set
 - > **1997-1998:** calibration data set
 - > 1999-2000: testing data set

• Simulation results on the testing data set:



Simulation results on the testing data set:



Identification of vehicles with controlled suspensions

GOAL: Derive a model for simulation of chassis and wheels accelerations as function of road profile and damper control

USE: Virtual design and tuning of Continuous Damping Control systems

Experimental setting

 C-segment prototype vehicle with controlled dampers and CDC-Skyhook (Continuous Damping Control system).

 Measurements are performed on a four-poster test bench of FIAT-Elasis Research Center.

Experimental setting

Road profiles:

- Random: random road.
- English Track: road with irregularly spaced holes and bumps.
- Short Back: impulse road.
- Motorway: level road.
- Pavé track: road with small amplitude irregularities.
- Drain well: negative impulse road.

Note: The road profiles are symmetric (left=right).

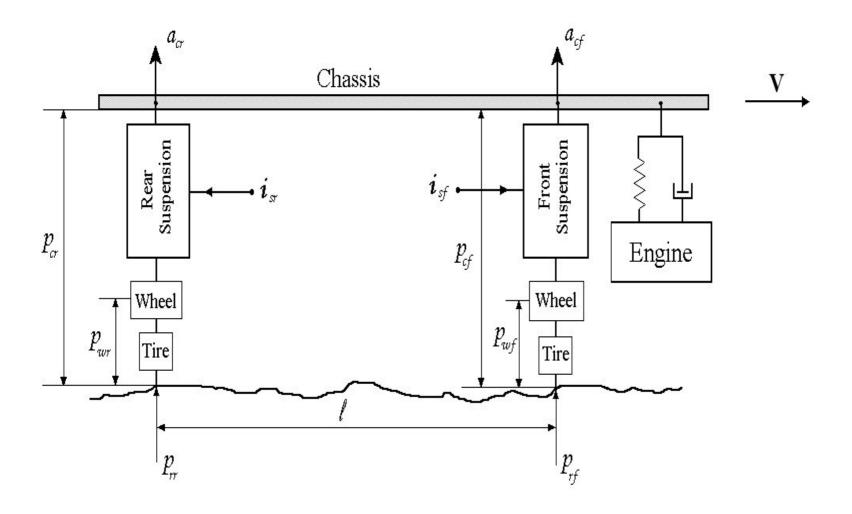
Experimental setting

Data set: 93184 data, collected with a sampling frequency of 512 Hz, partitioned as follows:

- Estimation data set: 0-5 seconds of each acquisition.
- Calibration data set: 5-7 seconds of each acquisition.
- Testing set: 7-14 seconds of each acquisition.

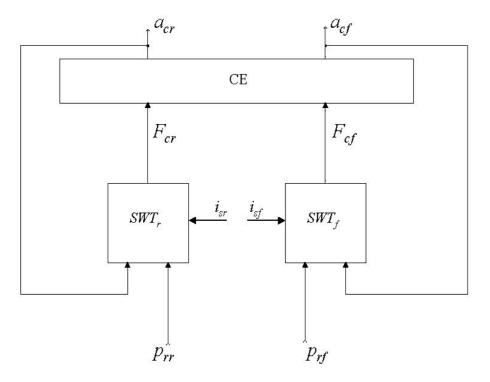
Structure of vehicles vertical dynamics

Since the road profiles are symmetric, a Half-car model has been considered:



Structured Identification of vehicles vertical dynamics

Structure decomposition:



- CE: chassis + engine
- SWT: suspension + wheel + tire

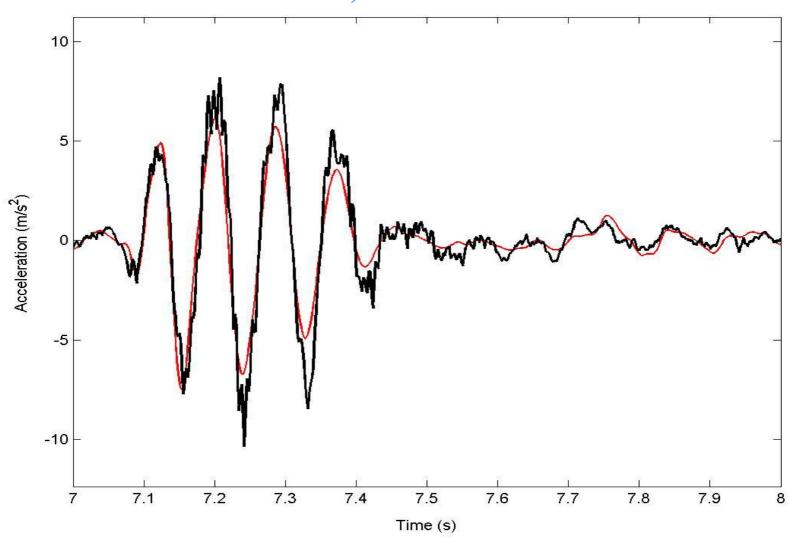
Measured variables:

- p_{rf} and p_{rr} : front and rear road profiles.
- i_{sf} and i_{sr}: control currents of front and rear suspensions.
- a_{cf} and a_{cr} : front and rear chassis vertical accelerations.

Note: F_{cf} and F_{cr} are not measured.

Results on testing set of NSM model

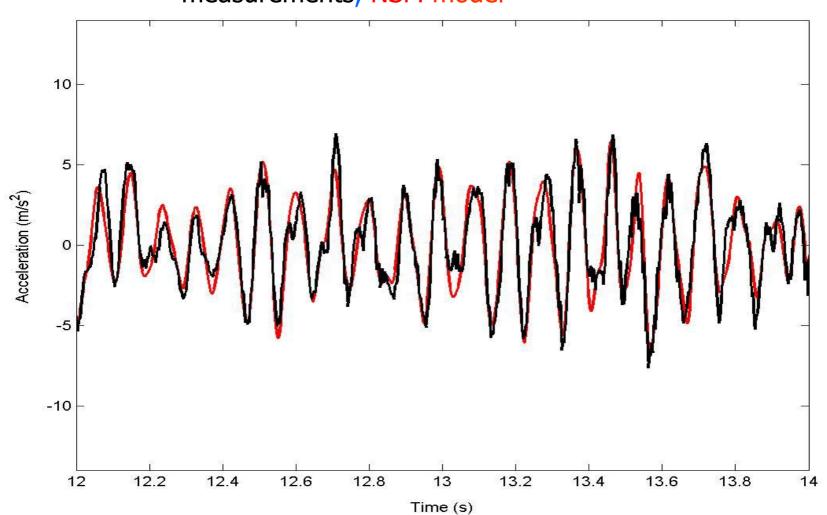
Front wheel acceleration: english track road measurements, NSM model



Results on testing set of NSM model

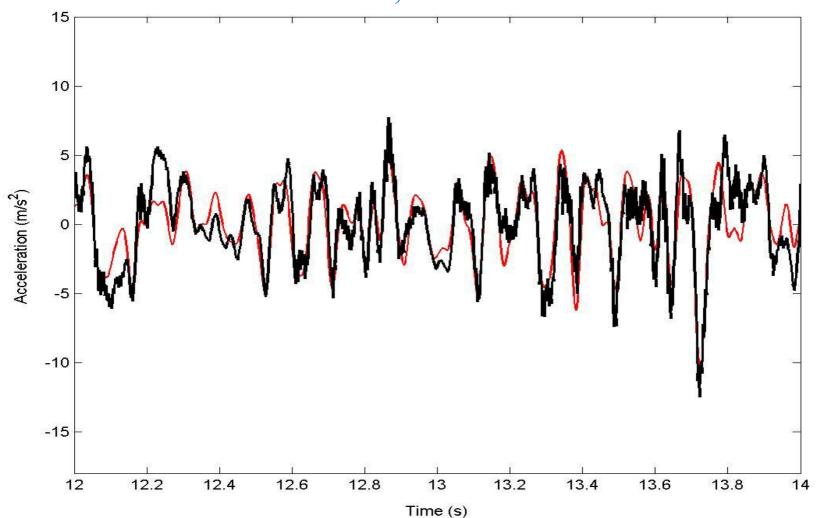
Chassis front accelerations: random road

measurements, NSM model



Results on testing set of NSM model

Chassis rear accelerations: random road measurements, NSM model.



Comparison with physical model

Chassis front accelerations: random road measurements, NSM model, physical model

